# Topic: Maths Sets (Test 1)

Topic: Maths Sets
Q.1
If A and B are two sets, then {tex}A \cap (A \cup B)'{/tex} is equal to
A. B
B. none of these
C. {tex}\emptyset {/tex}
D. A
Explaination / Solution:

{tex}A \cap (A \cup B)' = \phi {/tex} since {tex}(A \cup B)'{/tex} Set represent the element which are not belongs to it,so there is no common element with the set A.So the answer is null set
Workspace
Report
Q.2
Let A = { 1,2,3,4} , B = { 2,3,4,5,6 } , then (A∩B)(A∩B)is equal to :
A. { 1 }
B. { 2,3,4 }
C. { 5,6 }
D. { 1,2,3 }
Explaination / Solution: Workspace
Report
Q.3
Two sets A and B are said to be disjoint iff
A. A ∪B = ϕ
B. A – B = A
C. A ∩B ≠ϕ
D. A∩B=∅
Explaination / Solution:

Two sets are called disjoint if and only if these two set have no common element i.e A∩B=∅

Workspace
Report
Q.4
If A and B are two sets , then A∩(A∪B) is equal to
A. A
B. A ‘
C. B
D. none of these.
Explaination / Solution:

LetA={1,2,3,4}andB={1,2,3,4,5,6}HereA∪B={1,2,3,4,5,6}NowA∩(A∪B)={1,2,3,4,}=A

Workspace
Report
Q.5
If A = { 1,2,3 } , and B = { 1,3,5,7 } , then A∪B=
A. none of these.
B. { 1,2,3,5,7 }
C. { 1,3,5,7 }
D. { 1,2,3,7 }
Explaination / Solution: Workspace
Report
Q.6
If n (A ) =3 and n ( B ) = 6 and A⊆ B , then n(A∩B) is equal to
A. 6
B. 3
C. 0
D. 9
Explaination / Solution: Workspace
Report
Q.7
If aN = { ax : x ∈ N } , then the set 3N ∩ 7N is
A. 21N
B. 10N
C. 7N
D. 4N
Explaination / Solution: Workspace
Report
Q.8
Which set is the subset of all given sets ?
A. { }
B. { 1,2,3,4 }
C. { 1 }
D. { 0 }
Explaination / Solution:

{ } denoted as null set. and Null set is subset of all sets.

Workspace
Report
Q.9
If A⊂B , then
A. Ac=Bc
B. AcBc
C. Bc⊄Ac
D. BcAc
Explaination / Solution: Workspace
Report
Q.10
Given the sets A = { 1, 2, 3 } , B = { 3 , 4 } , C = { 4 , 5, 6 } , then A ∪( B ∩ C ) is
A. {1, 2, 3}
B. { 1, 2 ,3 , 4, 5, 6 }
C. { 1, 2 , 3 , 4 }
D. { 3 } 