A system of three linear equations in three variables is inconsistent if their planes

**A. ** intersect only at a point

**B. ** intersect in a line

**C. ** coincides with each other

**D. ** do not intersect

**Answer : ****Option D**

**Explaination / Solution: **

Workspace

Report

The solution of the system *x*
+ *y* − 3*x* = −6 , − 7*y* + 7*z* = 7 , 3*z* =
9 is

**A. ** *x* = 1, *y* = 2, *z* = 3

**B. ** *x* = −1, *y* = 2, *z* = 3

**C. ** *x* = − 1, *y* = −2, *z* = 3

**D. ** *x* = 1, *y* = 2, *z* = 3

**Answer : ****Option A**

**Explaination / Solution: **

Workspace

Report

If (*x* - 6) is the
HCF of *x*^{2} - 2*x* - 24 and *x*^{2} - *kx*
- 6 then the value of *k* is

**A. ** 3

**B. ** 5

**C. ** 6

**D. ** 8

**Answer : ****Option B**

**Explaination / Solution: **

Workspace

Report

is

**A. **

**B. **

**C. **

**D. **

**Answer : ****Option A**

**Explaination / Solution: **

Workspace

Report

is not equal to

**A. **

**B. **

**C. **

**D. **

**Answer : ****Option B**

**Explaination / Solution: **

Workspace

Report

gives

**A. **

**B. **

**C. **

**D. **

**Answer : ****Option C**

**Explaination / Solution: **

Workspace

Report

The square root of is equal to

**A. **

**B. **

**C. **

**D. **

**Answer : ****Option D**

**Explaination / Solution: **

Workspace

Report

Which of the following
should be added to make *x*^{4} + 64 a perfect square

**A. ** 4*x*^{2}

**B. ** 16*x*^{2}

**C. ** 8*x*^{2}

**D. ** -8*x*^{2}

**Answer : ****Option B**

**Explaination / Solution: **

Workspace

Report

The solution of 2*x*
− 1^{2} = 9 is equal to

**A. ** -1

**B. ** 2

**C. ** –1, 2

**D. ** None of these

**Answer : ****Option C**

**Explaination / Solution: **

Workspace

Report

The values of *a* and *b*
if 4*x* ^{4} − 24*x* ^{3} + 76*x* ^{2} +
*ax* +*b* is a perfect square are

**A. ** 100,120

**B. ** 10,12

**C. ** -120 ,100

**D. ** 12,10

**Answer : ****Option C**

**Explaination / Solution: **

Workspace

Report